The Cell Cycle

The cell cycle is an ordered series of events involving cell growth and cell division that produces two new daughter cells. Cells on the path to cell division proceed through a series of precisely timed and carefully regulated stages of growth, DNA replication, and nuclear and cytoplasmic division that ultimately produces two identical (clone) cells. The cell cycle has two major phases: interphase and the mitotic phase (Figure). During interphase, the cell grows and DNA is replicated. During the mitotic phase, the replicated DNA and cytoplasmic contents are separated, and the cell cytoplasm is typically partitioned by a third process of the cell cycle called cytokinesis. We should note, however, that interphase and mitosis (kayrokinesis) may take place without cytokinesis, in which case cells with multiple nuclei (multinucleate cells) are produced.

Like a clock, the cell cycles from interphase to the mitotic phase and back to interphase. Most of the cell cycle is spent in interphase, which is subdivided into G_{1}, S, and G_{2} phases. Cell growth occurs during G_{1}, DNA synthesis occurs during S, and more growth occurs during G_{2}. The mitotic phase consists of mitosis, in which the nuclear chromatin is divided, and cytokinesis, in which the cytoplasm is divided, resulting in two daughter cells.
The cell cycle in multicellular organisms consists of interphase and the mitotic phase. During interphase, the cell grows and the nuclear DNA is duplicated. Interphase is followed by the mitotic phase. During the mitotic phase, the duplicated chromosomes are segregated and distributed into daughter nuclei. Following mitosis, the cytoplasm is usually divided as well by cytokinesis, resulting in two genetically identical daughter cells.
1 of 8