
1 | SAMPLING AND DATA

Figure 1.1 We encounter statistics in our daily lives more often than we probably realize and from many different
sources, like the news. (credit: David Sim)

Introduction

Chapter Objectives

By the end of this chapter, the student should be able to:

• Recognize and differentiate between key terms.
• Apply various types of sampling methods to data collection.
• Create and interpret frequency tables.

You are probably asking yourself the question, "When and where will I use statistics?" If you read any newspaper, watch
television, or use the Internet, you will see statistical information. There are statistics about crime, sports, education,
politics, and real estate. Typically, when you read a newspaper article or watch a television news program, you are given
sample information. With this information, you may make a decision about the correctness of a statement, claim, or "fact."
Statistical methods can help you make the "best educated guess."

Since you will undoubtedly be given statistical information at some point in your life, you need to know some techniques
for analyzing the information thoughtfully. Think about buying a house or managing a budget. Think about your chosen
profession. The fields of economics, business, psychology, education, biology, law, computer science, police science, and
early childhood development require at least one course in statistics.

Included in this chapter are the basic ideas and words of probability and statistics. You will soon understand that statistics
and probability work together. You will also learn how data are gathered and what "good" data can be distinguished from
"bad."

1.1 | Definitions of Statistics, Probability, and Key Terms
The science of statistics deals with the collection, analysis, interpretation, and presentation of data. We see and use data in
our everyday lives.
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In your classroom, try this exercise. Have class members write down the average time (in hours, to the nearest half-
hour) they sleep per night. Your instructor will record the data. Then create a simple graph (called a dot plot) of the
data. A dot plot consists of a number line and dots (or points) positioned above the number line. For example, consider
the following data:

5; 5.5; 6; 6; 6; 6.5; 6.5; 6.5; 6.5; 7; 7; 8; 8; 9

The dot plot for this data would be as follows:

Figure 1.2

Does your dot plot look the same as or different from the example? Why? If you did the same example in an English
class with the same number of students, do you think the results would be the same? Why or why not?

Where do your data appear to cluster? How might you interpret the clustering?

The questions above ask you to analyze and interpret your data. With this example, you have begun your study of
statistics.

In this course, you will learn how to organize and summarize data. Organizing and summarizing data is called descriptive
statistics. Two ways to summarize data are by graphing and by using numbers (for example, finding an average). After you
have studied probability and probability distributions, you will use formal methods for drawing conclusions from "good"
data. The formal methods are called inferential statistics. Statistical inference uses probability to determine how confident
we can be that our conclusions are correct.

Effective interpretation of data (inference) is based on good procedures for producing data and thoughtful examination
of the data. You will encounter what will seem to be too many mathematical formulas for interpreting data. The goal
of statistics is not to perform numerous calculations using the formulas, but to gain an understanding of your data. The
calculations can be done using a calculator or a computer. The understanding must come from you. If you can thoroughly
grasp the basics of statistics, you can be more confident in the decisions you make in life.

Probability
Probability is a mathematical tool used to study randomness. It deals with the chance (the likelihood) of an event occurring.
For example, if you toss a fair coin four times, the outcomes may not be two heads and two tails. However, if you toss
the same coin 4,000 times, the outcomes will be close to half heads and half tails. The expected theoretical probability of
heads in any one toss is 1

2 or 0.5. Even though the outcomes of a few repetitions are uncertain, there is a regular pattern

of outcomes when there are many repetitions. After reading about the English statistician Karl Pearson who tossed a coin
24,000 times with a result of 12,012 heads, one of the authors tossed a coin 2,000 times. The results were 996 heads. The
fraction 996

2000 is equal to 0.498 which is very close to 0.5, the expected probability.

The theory of probability began with the study of games of chance such as poker. Predictions take the form of probabilities.
To predict the likelihood of an earthquake, of rain, or whether you will get an A in this course, we use probabilities. Doctors
use probability to determine the chance of a vaccination causing the disease the vaccination is supposed to prevent. A
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stockbroker uses probability to determine the rate of return on a client's investments. You might use probability to decide to
buy a lottery ticket or not. In your study of statistics, you will use the power of mathematics through probability calculations
to analyze and interpret your data.

Key Terms
In statistics, we generally want to study a population. You can think of a population as a collection of persons, things, or
objects under study. To study the population, we select a sample. The idea of sampling is to select a portion (or subset)
of the larger population and study that portion (the sample) to gain information about the population. Data are the result of
sampling from a population.

Because it takes a lot of time and money to examine an entire population, sampling is a very practical technique. If you
wished to compute the overall grade point average at your school, it would make sense to select a sample of students who
attend the school. The data collected from the sample would be the students' grade point averages. In presidential elections,
opinion poll samples of 1,000–2,000 people are taken. The opinion poll is supposed to represent the views of the people
in the entire country. Manufacturers of canned carbonated drinks take samples to determine if a 16 ounce can contains 16
ounces of carbonated drink.

From the sample data, we can calculate a statistic. A statistic is a number that represents a property of the sample. For
example, if we consider one math class to be a sample of the population of all math classes, then the average number of
points earned by students in that one math class at the end of the term is an example of a statistic. The statistic is an estimate
of a population parameter. A parameter is a number that is a property of the population. Since we considered all math
classes to be the population, then the average number of points earned per student over all the math classes is an example
of a parameter.

One of the main concerns in the field of statistics is how accurately a statistic estimates a parameter. The accuracy really
depends on how well the sample represents the population. The sample must contain the characteristics of the population
in order to be a representative sample. We are interested in both the sample statistic and the population parameter in
inferential statistics. In a later chapter, we will use the sample statistic to test the validity of the established population
parameter.

A variable, notated by capital letters such as X and Y, is a characteristic of interest for each person or thing in a population.
Variables may be numerical or categorical. Numerical variables take on values with equal units such as weight in pounds
and time in hours. Categorical variables place the person or thing into a category. If we let X equal the number of points
earned by one math student at the end of a term, then X is a numerical variable. If we let Y be a person's party affiliation,
then some examples of Y include Republican, Democrat, and Independent. Y is a categorical variable. We could do some
math with values of X (calculate the average number of points earned, for example), but it makes no sense to do math with
values of Y (calculating an average party affiliation makes no sense).

Data are the actual values of the variable. They may be numbers or they may be words. Datum is a single value.

Two words that come up often in statistics are mean and proportion. If you were to take three exams in your math classes
and obtain scores of 86, 75, and 92, you would calculate your mean score by adding the three exam scores and dividing by
three (your mean score would be 84.3 to one decimal place). If, in your math class, there are 40 students and 22 are men
and 18 are women, then the proportion of men students is 22

40 and the proportion of women students is 18
40 . Mean and

proportion are discussed in more detail in later chapters.

NOTE

The words " mean" and " average" are often used interchangeably. The substitution of one word for the other is
common practice. The technical term is "arithmetic mean," and "average" is technically a center location. However, in
practice among non-statisticians, "average" is commonly accepted for "arithmetic mean."

Example 1.1

Determine what the key terms refer to in the following study. We want to know the average (mean) amount
of money first year college students spend at ABC College on school supplies that do not include books. We
randomly survey 100 first year students at the college. Three of those students spent $150, $200, and $225,
respectively.
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Solution 1.1

The population is all first year students attending ABC College this term.

The sample could be all students enrolled in one section of a beginning statistics course at ABC College (although
this sample may not represent the entire population).

The parameter is the average (mean) amount of money spent (excluding books) by first year college students at
ABC College this term.

The statistic is the average (mean) amount of money spent (excluding books) by first year college students in the
sample.

The variable could be the amount of money spent (excluding books) by one first year student. Let X = the amount
of money spent (excluding books) by one first year student attending ABC College.

The data are the dollar amounts spent by the first year students. Examples of the data are $150, $200, and $225.

1.1 Determine what the key terms refer to in the following study. We want to know the average (mean) amount of
money spent on school uniforms each year by families with children at Knoll Academy. We randomly survey 100
families with children in the school. Three of the families spent $65, $75, and $95, respectively.

Example 1.2

Determine what the key terms refer to in the following study.

A study was conducted at a local college to analyze the average cumulative GPA’s of students who graduated last
year. Fill in the letter of the phrase that best describes each of the items below.

1._____ Population 2._____ Statistic 3._____ Parameter 4._____ Sample 5._____ Variable 6._____ Data

a) all students who attended the college last year
b) the cumulative GPA of one student who graduated from the college last year
c) 3.65, 2.80, 1.50, 3.90
d) a group of students who graduated from the college last year, randomly selected
e) the average cumulative GPA of students who graduated from the college last year
f) all students who graduated from the college last year
g) the average cumulative GPA of students in the study who graduated from the college last year

Solution 1.2
1. f; 2. g; 3. e; 4. d; 5. b; 6. c
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Example 1.3

Determine what the key terms refer to in the following study.

As part of a study designed to test the safety of automobiles, the National Transportation Safety Board collected
and reviewed data about the effects of an automobile crash on test dummies. Here is the criterion they used:

Speed at which Cars Crashed Location of “drive” (i.e. dummies)

35 miles/hour Front Seat

Table 1.1

Cars with dummies in the front seats were crashed into a wall at a speed of 35 miles per hour. We want to know
the proportion of dummies in the driver’s seat that would have had head injuries, if they had been actual drivers.
We start with a simple random sample of 75 cars.

Solution 1.3

The population is all cars containing dummies in the front seat.

The sample is the 75 cars, selected by a simple random sample.

The parameter is the proportion of driver dummies (if they had been real people) who would have suffered head
injuries in the population.

The statistic is proportion of driver dummies (if they had been real people) who would have suffered head injuries
in the sample.

The variable X = the number of driver dummies (if they had been real people) who would have suffered head
injuries.

The data are either: yes, had head injury, or no, did not.

Example 1.4

Determine what the key terms refer to in the following study.

An insurance company would like to determine the proportion of all medical doctors who have been involved in
one or more malpractice lawsuits. The company selects 500 doctors at random from a professional directory and
determines the number in the sample who have been involved in a malpractice lawsuit.

Solution 1.4

The population is all medical doctors listed in the professional directory.

The parameter is the proportion of medical doctors who have been involved in one or more malpractice suits in
the population.

The sample is the 500 doctors selected at random from the professional directory.

The statistic is the proportion of medical doctors who have been involved in one or more malpractice suits in the
sample.

The variable X = the number of medical doctors who have been involved in one or more malpractice suits.

The data are either: yes, was involved in one or more malpractice lawsuits, or no, was not.
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Do the following exercise collaboratively with up to four people per group. Find a population, a sample, the parameter,
the statistic, a variable, and data for the following study: You want to determine the average (mean) number of glasses
of milk college students drink per day. Suppose yesterday, in your English class, you asked five students how many
glasses of milk they drank the day before. The answers were 1, 0, 1, 3, and 4 glasses of milk.

1.2 | Data, Sampling, and Variation in Data and Sampling
Data may come from a population or from a sample. Small letters like x or y generally are used to represent data values.

Most data can be put into the following categories:

• Qualitative

• Quantitative

Qualitative data are the result of categorizing or describing attributes of a population. Hair color, blood type, ethnic group,
the car a person drives, and the street a person lives on are examples of qualitative data. Qualitative data are generally
described by words or letters. For instance, hair color might be black, dark brown, light brown, blonde, gray, or red. Blood
type might be AB+, O-, or B+. Researchers often prefer to use quantitative data over qualitative data because it lends itself
more easily to mathematical analysis. For example, it does not make sense to find an average hair color or blood type.

Quantitative data are always numbers. Quantitative data are the result of counting or measuring attributes of a population.
Amount of money, pulse rate, weight, number of people living in your town, and number of students who take statistics are
examples of quantitative data. Quantitative data may be either discrete or continuous.

All data that are the result of counting are called quantitative discrete data. These data take on only certain numerical
values. If you count the number of phone calls you receive for each day of the week, you might get values such as zero, one,
two, or three.

All data that are the result of measuring are quantitative continuous data assuming that we can measure accurately.
Measuring angles in radians might result in such numbers as π

6 , π
3 , π

2 , π , 3π
4 , and so on. If you and your friends carry

backpacks with books in them to school, the numbers of books in the backpacks are discrete data and the weights of the
backpacks are continuous data.
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Example 1.5 Data Sample of Quantitative Discrete Data

The data are the number of books students carry in their backpacks. You sample five students. Two students carry
three books, one student carries four books, one student carries two books, and one student carries one book. The
numbers of books (three, four, two, and one) are the quantitative discrete data.

1.5 The data are the number of machines in a gym. You sample five gyms. One gym has 12 machines, one gym has
15 machines, one gym has ten machines, one gym has 22 machines, and the other gym has 20 machines. What type of
data is this?

Example 1.6 Data Sample of Quantitative Continuous Data

The data are the weights of backpacks with books in them. You sample the same five students. The weights (in
pounds) of their backpacks are 6.2, 7, 6.8, 9.1, 4.3. Notice that backpacks carrying three books can have different
weights. Weights are quantitative continuous data because weights are measured.

1.6 The data are the areas of lawns in square feet. You sample five houses. The areas of the lawns are 144 sq. feet,
160 sq. feet, 190 sq. feet, 180 sq. feet, and 210 sq. feet. What type of data is this?

Example 1.7

You go to the supermarket and purchase three cans of soup (19 ounces) tomato bisque, 14.1 ounces lentil, and 19
ounces Italian wedding), two packages of nuts (walnuts and peanuts), four different kinds of vegetable (broccoli,
cauliflower, spinach, and carrots), and two desserts (16 ounces Cherry Garcia ice cream and two pounds (32
ounces chocolate chip cookies).

Name data sets that are quantitative discrete, quantitative continuous, and qualitative.

Solution 1.7

One Possible Solution:

• The three cans of soup, two packages of nuts, four kinds of vegetables and two desserts are quantitative
discrete data because you count them.

• The weights of the soups (19 ounces, 14.1 ounces, 19 ounces) are quantitative continuous data because you
measure weights as precisely as possible.

• Types of soups, nuts, vegetables and desserts are qualitative data because they are categorical.

Try to identify additional data sets in this example.
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Example 1.8

The data are the colors of backpacks. Again, you sample the same five students. One student has a red backpack,
two students have black backpacks, one student has a green backpack, and one student has a gray backpack. The
colors red, black, black, green, and gray are qualitative data.

1.8 The data are the colors of houses. You sample five houses. The colors of the houses are white, yellow, white, red,
and white. What type of data is this?

NOTE

You may collect data as numbers and report it categorically. For example, the quiz scores for each student are recorded
throughout the term. At the end of the term, the quiz scores are reported as A, B, C, D, or F.
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Example 1.9

Work collaboratively to determine the correct data type (quantitative or qualitative). Indicate whether quantitative
data are continuous or discrete. Hint: Data that are discrete often start with the words "the number of."

a. the number of pairs of shoes you own

b. the type of car you drive

c. where you go on vacation

d. the distance it is from your home to the nearest grocery store

e. the number of classes you take per school year.

f. the tuition for your classes

g. the type of calculator you use

h. movie ratings

i. political party preferences

j. weights of sumo wrestlers

k. amount of money (in dollars) won playing poker

l. number of correct answers on a quiz

m. peoples’ attitudes toward the government

n. IQ scores (This may cause some discussion.)

Solution 1.9
Items a, e, f, k, and l are quantitative discrete; items d, j, and n are quantitative continuous; items b, c, g, h, i, and
m are qualitative.

1.9 Determine the correct data type (quantitative or qualitative) for the number of cars in a parking lot. Indicate
whether quantitative data are continuous or discrete.

Example 1.10

A statistics professor collects information about the classification of her students as freshmen, sophomores,
juniors, or seniors. The data she collects are summarized in the pie chart Figure 1.2. What type of data does this
graph show?
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Figure 1.3

Solution 1.10
This pie chart shows the students in each year, which is qualitative data.

1.10 The registrar at State University keeps records of the number of credit hours students complete each semester.
The data he collects are summarized in the histogram. The class boundaries are 10 to less than 13, 13 to less than 16,
16 to less than 19, 19 to less than 22, and 22 to less than 25.

Figure 1.4

What type of data does this graph show?
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Qualitative Data Discussion
Below are tables comparing the number of part-time and full-time students at De Anza College and Foothill College
enrolled for the spring 2010 quarter. The tables display counts (frequencies) and percentages or proportions (relative
frequencies). The percent columns make comparing the same categories in the colleges easier. Displaying percentages along
with the numbers is often helpful, but it is particularly important when comparing sets of data that do not have the same
totals, such as the total enrollments for both colleges in this example. Notice how much larger the percentage for part-time
students at Foothill College is compared to De Anza College.

De Anza College Foothill College

Number Percent Number Percent

Full-time 9,200 40.9% Full-time 4,059 28.6%

Part-time 13,296 59.1% Part-time 10,124 71.4%

Total 22,496 100% Total 14,183 100%

Table 1.2 Fall Term 2007 (Census day)

Tables are a good way of organizing and displaying data. But graphs can be even more helpful in understanding the data.
There are no strict rules concerning which graphs to use. Two graphs that are used to display qualitative data are pie charts
and bar graphs.

In a pie chart, categories of data are represented by wedges in a circle and are proportional in size to the percent of
individuals in each category.

In a bar graph, the length of the bar for each category is proportional to the number or percent of individuals in each
category. Bars may be vertical or horizontal.

A Pareto chart consists of bars that are sorted into order by category size (largest to smallest).

Look at Figure 1.5 and Figure 1.6 and determine which graph (pie or bar) you think displays the comparisons better.

It is a good idea to look at a variety of graphs to see which is the most helpful in displaying the data. We might make
different choices of what we think is the “best” graph depending on the data and the context. Our choice also depends on
what we are using the data for.

(a) (b)
Figure 1.5
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Figure 1.6

Percentages That Add to More (or Less) Than 100%
Sometimes percentages add up to be more than 100% (or less than 100%). In the graph, the percentages add to more than
100% because students can be in more than one category. A bar graph is appropriate to compare the relative size of the
categories. A pie chart cannot be used. It also could not be used if the percentages added to less than 100%.

Characteristic/Category Percent

Full-Time Students 40.9%

Students who intend to transfer to a 4-year educational institution 48.6%

Students under age 25 61.0%

TOTAL 150.5%

Table 1.3 De Anza College Spring 2010

Figure 1.7
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Omitting Categories/Missing Data
The table displays Ethnicity of Students but is missing the "Other/Unknown" category. This category contains people who
did not feel they fit into any of the ethnicity categories or declined to respond. Notice that the frequencies do not add up to
the total number of students. In this situation, create a bar graph and not a pie chart.

Frequency Percent

Asian 8,794 36.1%

Black 1,412 5.8%

Filipino 1,298 5.3%

Hispanic 4,180 17.1%

Native American 146 0.6%

Pacific Islander 236 1.0%

White 5,978 24.5%

TOTAL 22,044 out of 24,382 90.4% out of 100%

Table 1.4 Ethnicity of Students at De Anza College Fall
Term 2007 (Census Day)

Figure 1.8

The following graph is the same as the previous graph but the “Other/Unknown” percent (9.6%) has been included. The
“Other/Unknown” category is large compared to some of the other categories (Native American, 0.6%, Pacific Islander
1.0%). This is important to know when we think about what the data are telling us.

This particular bar graph in Figure 1.9 can be difficult to understand visually. The graph in Figure 1.10 is a Pareto chart.
The Pareto chart has the bars sorted from largest to smallest and is easier to read and interpret.
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Figure 1.9 Bar Graph with Other/Unknown Category

Figure 1.10 Pareto Chart With Bars Sorted by Size

Pie Charts: No Missing Data
The following pie charts have the “Other/Unknown” category included (since the percentages must add to 100%). The
chart in Figure 1.11b is organized by the size of each wedge, which makes it a more visually informative graph than the
unsorted, alphabetical graph in Figure 1.11a.
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(a)
(b)

Figure 1.11

Sampling
Gathering information about an entire population often costs too much or is virtually impossible. Instead, we use a sample
of the population. A sample should have the same characteristics as the population it is representing. Most statisticians
use various methods of random sampling in an attempt to achieve this goal. This section will describe a few of the most
common methods. There are several different methods of random sampling. In each form of random sampling, each
member of a population initially has an equal chance of being selected for the sample. Each method has pros and cons. The
easiest method to describe is called a simple random sample. Any group of n individuals is equally likely to be chosen by
any other group of n individuals if the simple random sampling technique is used. In other words, each sample of the same
size has an equal chance of being selected. For example, suppose Lisa wants to form a four-person study group (herself
and three other people) from her pre-calculus class, which has 31 members not including Lisa. To choose a simple random
sample of size three from the other members of her class, Lisa could put all 31 names in a hat, shake the hat, close her
eyes, and pick out three names. A more technological way is for Lisa to first list the last names of the members of her class
together with a two-digit number, as in Table 1.5:

ID Name ID Name ID Name

00 Anselmo 11 King 21 Roquero

01 Bautista 12 Legeny 22 Roth

02 Bayani 13 Lundquist 23 Rowell

03 Cheng 14 Macierz 24 Salangsang

04 Cuarismo 15 Motogawa 25 Slade

05 Cuningham 16 Okimoto 26 Stratcher

06 Fontecha 17 Patel 27 Tallai

07 Hong 18 Price 28 Tran

08 Hoobler 19 Quizon 29 Wai

09 Jiao 20 Reyes 30 Wood

10 Khan

Table 1.5 Class Roster
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Lisa can use a table of random numbers (found in many statistics books and mathematical handbooks), a calculator, or
a computer to generate random numbers. For this example, suppose Lisa chooses to generate random numbers from a
calculator. The numbers generated are as follows:

0.94360; 0.99832; 0.14669; 0.51470; 0.40581; 0.73381; 0.04399

Lisa reads two-digit groups until she has chosen three class members (that is, she reads 0.94360 as the groups 94, 43, 36,
60). Each random number may only contribute one class member. If she needed to, Lisa could have generated more random
numbers.

The random numbers 0.94360 and 0.99832 do not contain appropriate two digit numbers. However the third random
number, 0.14669, contains 14 (the fourth random number also contains 14), the fifth random number contains 05, and the
seventh random number contains 04. The two-digit number 14 corresponds to Macierz, 05 corresponds to Cuningham, and
04 corresponds to Cuarismo. Besides herself, Lisa’s group will consist of Marcierz, Cuningham, and Cuarismo.

To generate random numbers:

• Press MATH.

• Arrow over to PRB.

• Press 5:randInt(. Enter 0, 30).

• Press ENTER for the first random number.

• Press ENTER two more times for the other 2 random numbers. If there is a repeat press ENTER again.

Note: randInt(0, 30, 3) will generate 3 random numbers.

Figure 1.12

Besides simple random sampling, there are other forms of sampling that involve a chance process for getting the sample.
Other well-known random sampling methods are the stratified sample, the cluster sample, and the systematic
sample.

To choose a stratified sample, divide the population into groups called strata and then take a proportionate number
from each stratum. For example, you could stratify (group) your college population by department and then choose a
proportionate simple random sample from each stratum (each department) to get a stratified random sample. To choose
a simple random sample from each department, number each member of the first department, number each member of
the second department, and do the same for the remaining departments. Then use simple random sampling to choose
proportionate numbers from the first department and do the same for each of the remaining departments. Those numbers
picked from the first department, picked from the second department, and so on represent the members who make up the
stratified sample.

To choose a cluster sample, divide the population into clusters (groups) and then randomly select some of the clusters.
All the members from these clusters are in the cluster sample. For example, if you randomly sample four departments
from your college population, the four departments make up the cluster sample. Divide your college faculty by department.
The departments are the clusters. Number each department, and then choose four different numbers using simple random
sampling. All members of the four departments with those numbers are the cluster sample.
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To choose a systematic sample, randomly select a starting point and take every nth piece of data from a listing of the
population. For example, suppose you have to do a phone survey. Your phone book contains 20,000 residence listings. You
must choose 400 names for the sample. Number the population 1–20,000 and then use a simple random sample to pick a
number that represents the first name in the sample. Then choose every fiftieth name thereafter until you have a total of 400
names (you might have to go back to the beginning of your phone list). Systematic sampling is frequently chosen because
it is a simple method.

A type of sampling that is non-random is convenience sampling. Convenience sampling involves using results that are
readily available. For example, a computer software store conducts a marketing study by interviewing potential customers
who happen to be in the store browsing through the available software. The results of convenience sampling may be very
good in some cases and highly biased (favor certain outcomes) in others.

Sampling data should be done very carefully. Collecting data carelessly can have devastating results. Surveys mailed to
households and then returned may be very biased (they may favor a certain group). It is better for the person conducting the
survey to select the sample respondents.

True random sampling is done with replacement. That is, once a member is picked, that member goes back into the
population and thus may be chosen more than once. However for practical reasons, in most populations, simple random
sampling is done without replacement. Surveys are typically done without replacement. That is, a member of the
population may be chosen only once. Most samples are taken from large populations and the sample tends to be small in
comparison to the population. Since this is the case, sampling without replacement is approximately the same as sampling
with replacement because the chance of picking the same individual more than once with replacement is very low.

In a college population of 10,000 people, suppose you want to pick a sample of 1,000 randomly for a survey. For any
particular sample of 1,000, if you are sampling with replacement,

• the chance of picking the first person is 1,000 out of 10,000 (0.1000);

• the chance of picking a different second person for this sample is 999 out of 10,000 (0.0999);

• the chance of picking the same person again is 1 out of 10,000 (very low).

If you are sampling without replacement,

• the chance of picking the first person for any particular sample is 1000 out of 10,000 (0.1000);

• the chance of picking a different second person is 999 out of 9,999 (0.0999);

• you do not replace the first person before picking the next person.

Compare the fractions 999/10,000 and 999/9,999. For accuracy, carry the decimal answers to four decimal places. To four
decimal places, these numbers are equivalent (0.0999).

Sampling without replacement instead of sampling with replacement becomes a mathematical issue only when the
population is small. For example, if the population is 25 people, the sample is ten, and you are sampling with replacement
for any particular sample, then the chance of picking the first person is ten out of 25, and the chance of picking a different
second person is nine out of 25 (you replace the first person).

If you sample without replacement, then the chance of picking the first person is ten out of 25, and then the chance of
picking the second person (who is different) is nine out of 24 (you do not replace the first person).

Compare the fractions 9/25 and 9/24. To four decimal places, 9/25 = 0.3600 and 9/24 = 0.3750. To four decimal places,
these numbers are not equivalent.

When you analyze data, it is important to be aware of sampling errors and nonsampling errors. The actual process of
sampling causes sampling errors. For example, the sample may not be large enough. Factors not related to the sampling
process cause nonsampling errors. A defective counting device can cause a nonsampling error.

In reality, a sample will never be exactly representative of the population so there will always be some sampling error. As a
rule, the larger the sample, the smaller the sampling error.

In statistics, a sampling bias is created when a sample is collected from a population and some members of the population
are not as likely to be chosen as others (remember, each member of the population should have an equally likely chance of
being chosen). When a sampling bias happens, there can be incorrect conclusions drawn about the population that is being
studied.
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Example 1.11

A study is done to determine the average tuition that San Jose State undergraduate students pay per semester.
Each student in the following samples is asked how much tuition he or she paid for the Fall semester. What is the
type of sampling in each case?

a. A sample of 100 undergraduate San Jose State students is taken by organizing the students’ names by
classification (freshman, sophomore, junior, or senior), and then selecting 25 students from each.

b. A random number generator is used to select a student from the alphabetical listing of all undergraduate
students in the Fall semester. Starting with that student, every 50th student is chosen until 75 students are
included in the sample.

c. A completely random method is used to select 75 students. Each undergraduate student in the fall semester
has the same probability of being chosen at any stage of the sampling process.

d. The freshman, sophomore, junior, and senior years are numbered one, two, three, and four, respectively.
A random number generator is used to pick two of those years. All students in those two years are in the
sample.

e. An administrative assistant is asked to stand in front of the library one Wednesday and to ask the first 100
undergraduate students he encounters what they paid for tuition the Fall semester. Those 100 students are
the sample.

Solution 1.11
a. stratified; b. systematic; c. simple random; d. cluster; e. convenience

1.11 You are going to use the random number generator to generate different types of samples from the data.

This table displays six sets of quiz scores (each quiz counts 10 points) for an elementary statistics class.

#1 #2 #3 #4 #5 #6

5 7 10 9 8 3

10 5 9 8 7 6

9 10 8 6 7 9

9 10 10 9 8 9

7 8 9 5 7 4

9 9 9 10 8 7

7 7 10 9 8 8

8 8 9 10 8 8

9 7 8 7 7 8

8 8 10 9 8 7

Table 1.6

Instructions: Use the Random Number Generator to pick samples.

1. Create a stratified sample by column. Pick three quiz scores randomly from each column.

◦ Number each row one through ten.
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◦ On your calculator, press Math and arrow over to PRB.

◦ For column 1, Press 5:randInt( and enter 1,10). Press ENTER. Record the number. Press ENTER 2 more
times (even the repeats). Record these numbers. Record the three quiz scores in column one that correspond
to these three numbers.

◦ Repeat for columns two through six.

◦ These 18 quiz scores are a stratified sample.

2. Create a cluster sample by picking two of the columns. Use the column numbers: one through six.

◦ Press MATH and arrow over to PRB.

◦ Press 5:randInt( and enter 1,6). Press ENTER. Record the number. Press ENTER and record that number.

◦ The two numbers are for two of the columns.

◦ The quiz scores (20 of them) in these 2 columns are the cluster sample.

3. Create a simple random sample of 15 quiz scores.

◦ Use the numbering one through 60.

◦ Press MATH. Arrow over to PRB. Press 5:randInt( and enter 1, 60).

◦ Press ENTER 15 times and record the numbers.

◦ Record the quiz scores that correspond to these numbers.

◦ These 15 quiz scores are the systematic sample.

4. Create a systematic sample of 12 quiz scores.

◦ Use the numbering one through 60.

◦ Press MATH. Arrow over to PRB. Press 5:randInt( and enter 1, 60).

◦ Press ENTER. Record the number and the first quiz score. From that number, count ten quiz scores and
record that quiz score. Keep counting ten quiz scores and recording the quiz score until you have a sample
of 12 quiz scores. You may wrap around (go back to the beginning).

Example 1.12

Determine the type of sampling used (simple random, stratified, systematic, cluster, or convenience).

a. A soccer coach selects six players from a group of boys aged eight to ten, seven players from a group of
boys aged 11 to 12, and three players from a group of boys aged 13 to 14 to form a recreational soccer team.

b. A pollster interviews all human resource personnel in five different high tech companies.

c. A high school educational researcher interviews 50 high school female teachers and 50 high school male
teachers.

d. A medical researcher interviews every third cancer patient from a list of cancer patients at a local hospital.

e. A high school counselor uses a computer to generate 50 random numbers and then picks students whose
names correspond to the numbers.

f. A student interviews classmates in his algebra class to determine how many pairs of jeans a student owns,
on the average.

Solution 1.12
a. stratified; b. cluster; c. stratified; d. systematic; e. simple random; f.convenience
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1.12 Determine the type of sampling used (simple random, stratified, systematic, cluster, or convenience).

A high school principal polls 50 freshmen, 50 sophomores, 50 juniors, and 50 seniors regarding policy changes for
after school activities.

If we were to examine two samples representing the same population, even if we used random sampling methods for the
samples, they would not be exactly the same. Just as there is variation in data, there is variation in samples. As you become
accustomed to sampling, the variability will begin to seem natural.

Example 1.13

Suppose ABC College has 10,000 part-time students (the population). We are interested in the average amount of
money a part-time student spends on books in the fall term. Asking all 10,000 students is an almost impossible
task.

Suppose we take two different samples.

First, we use convenience sampling and survey ten students from a first term organic chemistry class. Many of
these students are taking first term calculus in addition to the organic chemistry class. The amount of money they
spend on books is as follows:

$128; $87; $173; $116; $130; $204; $147; $189; $93; $153

The second sample is taken using a list of senior citizens who take P.E. classes and taking every fifth senior citizen
on the list, for a total of ten senior citizens. They spend:

$50; $40; $36; $15; $50; $100; $40; $53; $22; $22

It is unlikely that any student is in both samples.

a. Do you think that either of these samples is representative of (or is characteristic of) the entire 10,000 part-time
student population?

Solution 1.13
a. No. The first sample probably consists of science-oriented students. Besides the chemistry course, some of
them are also taking first-term calculus. Books for these classes tend to be expensive. Most of these students are,
more than likely, paying more than the average part-time student for their books. The second sample is a group of
senior citizens who are, more than likely, taking courses for health and interest. The amount of money they spend
on books is probably much less than the average parttime student. Both samples are biased. Also, in both cases,
not all students have a chance to be in either sample.

b. Since these samples are not representative of the entire population, is it wise to use the results to describe the
entire population?

Solution 1.13
b. No. For these samples, each member of the population did not have an equally likely chance of being chosen.

Now, suppose we take a third sample. We choose ten different part-time students from the disciplines of
chemistry, math, English, psychology, sociology, history, nursing, physical education, art, and early childhood
development. (We assume that these are the only disciplines in which part-time students at ABC College are
enrolled and that an equal number of part-time students are enrolled in each of the disciplines.) Each student is
chosen using simple random sampling. Using a calculator, random numbers are generated and a student from
a particular discipline is selected if he or she has a corresponding number. The students spend the following
amounts:

$180; $50; $150; $85; $260; $75; $180; $200; $200; $150

c. Is the sample biased?
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Solution 1.13
c. The sample is unbiased, but a larger sample would be recommended to increase the likelihood that the sample
will be close to representative of the population. However, for a biased sampling technique, even a large sample
runs the risk of not being representative of the population.

Students often ask if it is "good enough" to take a sample, instead of surveying the entire population. If the survey
is done well, the answer is yes.

1.13 A local radio station has a fan base of 20,000 listeners. The station wants to know if its audience would prefer
more music or more talk shows. Asking all 20,000 listeners is an almost impossible task.

The station uses convenience sampling and surveys the first 200 people they meet at one of the station’s music concert
events. 24 people said they’d prefer more talk shows, and 176 people said they’d prefer more music.

Do you think that this sample is representative of (or is characteristic of) the entire 20,000 listener population?

As a class, determine whether or not the following samples are representative. If they are not, discuss the reasons.

1. To find the average GPA of all students in a university, use all honor students at the university as the sample.

2. To find out the most popular cereal among young people under the age of ten, stand outside a large supermarket
for three hours and speak to every twentieth child under age ten who enters the supermarket.

3. To find the average annual income of all adults in the United States, sample U.S. congressmen. Create a cluster
sample by considering each state as a stratum (group). By using simple random sampling, select states to be part
of the cluster. Then survey every U.S. congressman in the cluster.

4. To determine the proportion of people taking public transportation to work, survey 20 people in New York City.
Conduct the survey by sitting in Central Park on a bench and interviewing every person who sits next to you.

5. To determine the average cost of a two-day stay in a hospital in Massachusetts, survey 100 hospitals across the
state using simple random sampling.

Variation in Data
Variation is present in any set of data. For example, 16-ounce cans of beverage may contain more or less than 16 ounces of
liquid. In one study, eight 16 ounce cans were measured and produced the following amount (in ounces) of beverage:

15.8; 16.1; 15.2; 14.8; 15.8; 15.9; 16.0; 15.5

Measurements of the amount of beverage in a 16-ounce can may vary because different people make the measurements or
because the exact amount, 16 ounces of liquid, was not put into the cans. Manufacturers regularly run tests to determine if
the amount of beverage in a 16-ounce can falls within the desired range.

Be aware that as you take data, your data may vary somewhat from the data someone else is taking for the same purpose.
This is completely natural. However, if two or more of you are taking the same data and get very different results, it is time
for you and the others to reevaluate your data-taking methods and your accuracy.

Variation in Samples
It was mentioned previously that two or more samples from the same population, taken randomly, and having close to
the same characteristics of the population will likely be different from each other. Suppose Doreen and Jung both decide
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to study the average amount of time students at their college sleep each night. Doreen and Jung each take samples of 500
students. Doreen uses systematic sampling and Jung uses cluster sampling. Doreen's sample will be different from Jung's
sample. Even if Doreen and Jung used the same sampling method, in all likelihood their samples would be different. Neither
would be wrong, however.

Think about what contributes to making Doreen’s and Jung’s samples different.

If Doreen and Jung took larger samples (i.e. the number of data values is increased), their sample results (the average
amount of time a student sleeps) might be closer to the actual population average. But still, their samples would be, in all
likelihood, different from each other. This variability in samples cannot be stressed enough.

Size of a Sample
The size of a sample (often called the number of observations) is important. The examples you have seen in this book so far
have been small. Samples of only a few hundred observations, or even smaller, are sufficient for many purposes. In polling,
samples that are from 1,200 to 1,500 observations are considered large enough and good enough if the survey is random
and is well done. You will learn why when you study confidence intervals.

Be aware that many large samples are biased. For example, call-in surveys are invariably biased, because people choose to
respond or not.

Divide into groups of two, three, or four. Your instructor will give each group one six-sided die. Try this experiment
twice. Roll one fair die (six-sided) 20 times. Record the number of ones, twos, threes, fours, fives, and sixes you get in
Table 1.7 and Table 1.8 (“frequency” is the number of times a particular face of the die occurs):

Face on Die Frequency

1

2

3

4

5

6

Table 1.7 First Experiment (20
rolls)

Face on Die Frequency

1

2

3

4

5

6

Table 1.8 Second Experiment
(20 rolls)

Did the two experiments have the same results? Probably not. If you did the experiment a third time, do you expect the
results to be identical to the first or second experiment? Why or why not?
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Which experiment had the correct results? They both did. The job of the statistician is to see through the variability
and draw appropriate conclusions.

Critical Evaluation
We need to evaluate the statistical studies we read about critically and analyze them before accepting the results of the
studies. Common problems to be aware of include

• Problems with samples: A sample must be representative of the population. A sample that is not representative of the
population is biased. Biased samples that are not representative of the population give results that are inaccurate and
not valid.

• Self-selected samples: Responses only by people who choose to respond, such as call-in surveys, are often unreliable.

• Sample size issues: Samples that are too small may be unreliable. Larger samples are better, if possible. In some
situations, having small samples is unavoidable and can still be used to draw conclusions. Examples: crash testing cars
or medical testing for rare conditions

• Undue influence: collecting data or asking questions in a way that influences the response

• Non-response or refusal of subject to participate: The collected responses may no longer be representative of the
population. Often, people with strong positive or negative opinions may answer surveys, which can affect the results.

• Causality: A relationship between two variables does not mean that one causes the other to occur. They may be related
(correlated) because of their relationship through a different variable.

• Self-funded or self-interest studies: A study performed by a person or organization in order to support their claim. Is
the study impartial? Read the study carefully to evaluate the work. Do not automatically assume that the study is good,
but do not automatically assume the study is bad either. Evaluate it on its merits and the work done.

• Misleading use of data: improperly displayed graphs, incomplete data, or lack of context

• Confounding: When the effects of multiple factors on a response cannot be separated. Confounding makes it difficult
or impossible to draw valid conclusions about the effect of each factor.

1.3 | Frequency, Frequency Tables, and Levels of
Measurement
Once you have a set of data, you will need to organize it so that you can analyze how frequently each datum occurs in the
set. However, when calculating the frequency, you may need to round your answers so that they are as precise as possible.

Answers and Rounding Off
A simple way to round off answers is to carry your final answer one more decimal place than was present in the original
data. Round off only the final answer. Do not round off any intermediate results, if possible. If it becomes necessary to round
off intermediate results, carry them to at least twice as many decimal places as the final answer. For example, the average
of the three quiz scores four, six, and nine is 6.3, rounded off to the nearest tenth, because the data are whole numbers. Most
answers will be rounded off in this manner.

It is not necessary to reduce most fractions in this course. Especially in Probability Topics, the chapter on probability, it
is more helpful to leave an answer as an unreduced fraction.

Levels of Measurement
The way a set of data is measured is called its level of measurement. Correct statistical procedures depend on a researcher
being familiar with levels of measurement. Not every statistical operation can be used with every set of data. Data can be
classified into four levels of measurement. They are (from lowest to highest level):

• Nominal scale level

• Ordinal scale level

• Interval scale level

• Ratio scale level
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Data that is measured using a nominal scale is qualitative. Categories, colors, names, labels and favorite foods along with
yes or no responses are examples of nominal level data. Nominal scale data are not ordered. For example, trying to classify
people according to their favorite food does not make any sense. Putting pizza first and sushi second is not meaningful.

Smartphone companies are another example of nominal scale data. Some examples are Sony, Motorola, Nokia, Samsung
and Apple. This is just a list and there is no agreed upon order. Some people may favor Apple but that is a matter of opinion.
Nominal scale data cannot be used in calculations.

Data that is measured using an ordinal scale is similar to nominal scale data but there is a big difference. The ordinal scale
data can be ordered. An example of ordinal scale data is a list of the top five national parks in the United States. The top
five national parks in the United States can be ranked from one to five but we cannot measure differences between the data.

Another example of using the ordinal scale is a cruise survey where the responses to questions about the cruise are
“excellent,” “good,” “satisfactory,” and “unsatisfactory.” These responses are ordered from the most desired response to the
least desired. But the differences between two pieces of data cannot be measured. Like the nominal scale data, ordinal scale
data cannot be used in calculations.

Data that is measured using the interval scale is similar to ordinal level data because it has a definite ordering but there
is a difference between data. The differences between interval scale data can be measured though the data does not have a
starting point.

Temperature scales like Celsius (C) and Fahrenheit (F) are measured by using the interval scale. In both temperature
measurements, 40° is equal to 100° minus 60°. Differences make sense. But 0 degrees does not because, in both scales, 0 is
not the absolute lowest temperature. Temperatures like -10° F and -15° C exist and are colder than 0.

Interval level data can be used in calculations, but one type of comparison cannot be done. 80° C is not four times as hot as
20° C (nor is 80° F four times as hot as 20° F). There is no meaning to the ratio of 80 to 20 (or four to one).

Data that is measured using the ratio scale takes care of the ratio problem and gives you the most information. Ratio scale
data is like interval scale data, but it has a 0 point and ratios can be calculated. For example, four multiple choice statistics
final exam scores are 80, 68, 20 and 92 (out of a possible 100 points). The exams are machine-graded.

The data can be put in order from lowest to highest: 20, 68, 80, 92.

The differences between the data have meaning. The score 92 is more than the score 68 by 24 points. Ratios can be
calculated. The smallest score is 0. So 80 is four times 20. The score of 80 is four times better than the score of 20.

Frequency
Twenty students were asked how many hours they worked per day. Their responses, in hours, are as follows: 5; 6; 3; 3; 2;
4; 7; 5; 2; 3; 5; 6; 5; 4; 4; 3; 5; 2; 5; 3.

Table 1.9 lists the different data values in ascending order and their frequencies.

DATA VALUE FREQUENCY

2 3

3 5

4 3

5 6

6 2

7 1

Table 1.9 Frequency Table of
Student Work Hours

A frequency is the number of times a value of the data occurs. According to Table 1.9, there are three students who work
two hours, five students who work three hours, and so on. The sum of the values in the frequency column, 20, represents
the total number of students included in the sample.

A relative frequency is the ratio (fraction or proportion) of the number of times a value of the data occurs in the set of all
outcomes to the total number of outcomes. To find the relative frequencies, divide each frequency by the total number of
students in the sample–in this case, 20. Relative frequencies can be written as fractions, percents, or decimals.
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DATA VALUE FREQUENCY RELATIVE FREQUENCY

2 3
3
20 or 0.15

3 5
5
20 or 0.25

4 3
3
20 or 0.15

5 6
6
20 or 0.30

6 2
2
20 or 0.10

7 1
1
20 or 0.05

Table 1.10 Frequency Table of Student Work Hours with
Relative Frequencies

The sum of the values in the relative frequency column of Table 1.10 is 20
20 , or 1.

Cumulative relative frequency is the accumulation of the previous relative frequencies. To find the cumulative relative
frequencies, add all the previous relative frequencies to the relative frequency for the current row, as shown in Table 1.11.

DATA VALUE FREQUENCY RELATIVE
FREQUENCY

CUMULATIVE RELATIVE
FREQUENCY

2 3
3
20 or 0.15 0.15

3 5
5
20 or 0.25 0.15 + 0.25 = 0.40

4 3
3
20 or 0.15 0.40 + 0.15 = 0.55

5 6
6
20 or 0.30 0.55 + 0.30 = 0.85

6 2
2
20 or 0.10 0.85 + 0.10 = 0.95

7 1
1
20 or 0.05 0.95 + 0.05 = 1.00

Table 1.11 Frequency Table of Student Work Hours with Relative and
Cumulative Relative Frequencies

The last entry of the cumulative relative frequency column is one, indicating that one hundred percent of the data has been
accumulated.

NOTE

Because of rounding, the relative frequency column may not always sum to one, and the last entry in the cumulative
relative frequency column may not be one. However, they each should be close to one.

Table 1.12 represents the heights, in inches, of a sample of 100 male semiprofessional soccer players.
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HEIGHTS
(INCHES) FREQUENCY RELATIVE

FREQUENCY

CUMULATIVE
RELATIVE
FREQUENCY

59.95–61.95 5
5

100 = 0.05 0.05

61.95–63.95 3
3

100 = 0.03 0.05 + 0.03 = 0.08

63.95–65.95 15
15
100 = 0.15 0.08 + 0.15 = 0.23

65.95–67.95 40
40
100 = 0.40 0.23 + 0.40 = 0.63

67.95–69.95 17
17
100 = 0.17 0.63 + 0.17 = 0.80

69.95–71.95 12
12
100 = 0.12 0.80 + 0.12 = 0.92

71.95–73.95 7
7

100 = 0.07 0.92 + 0.07 = 0.99

73.95–75.95 1
1

100 = 0.01 0.99 + 0.01 = 1.00

Total = 100 Total = 1.00

Table 1.12 Frequency Table of Soccer Player Height

The data in this table have been grouped into the following intervals:

• 59.95 to 61.95 inches

• 61.95 to 63.95 inches

• 63.95 to 65.95 inches

• 65.95 to 67.95 inches

• 67.95 to 69.95 inches

• 69.95 to 71.95 inches

• 71.95 to 73.95 inches

• 73.95 to 75.95 inches

NOTE

This example is used again in Descriptive Statistics, where the method used to compute the intervals will be
explained.

In this sample, there are five players whose heights fall within the interval 59.95–61.95 inches, three players whose heights
fall within the interval 61.95–63.95 inches, 15 players whose heights fall within the interval 63.95–65.95 inches, 40 players
whose heights fall within the interval 65.95–67.95 inches, 17 players whose heights fall within the interval 67.95–69.95
inches, 12 players whose heights fall within the interval 69.95–71.95, seven players whose heights fall within the interval
71.95–73.95, and one player whose heights fall within the interval 73.95–75.95. All heights fall between the endpoints of
an interval and not at the endpoints.
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Example 1.14

From Table 1.12, find the percentage of heights that are less than 65.95 inches.

Solution 1.14
If you look at the first, second, and third rows, the heights are all less than 65.95 inches. There are 5 + 3 + 15 = 23
players whose heights are less than 65.95 inches. The percentage of heights less than 65.95 inches is then 23

100
or 23%. This percentage is the cumulative relative frequency entry in the third row.

1.14 Table 1.13 shows the amount, in inches, of annual rainfall in a sample of towns.

Rainfall (Inches) Frequency Relative Frequency Cumulative Relative Frequency

2.95–4.97 6
6
50 = 0.12 0.12

4.97–6.99 7
7
50 = 0.14 0.12 + 0.14 = 0.26

6.99–9.01 15
15
50 = 0.30 0.26 + 0.30 = 0.56

9.01–11.03 8
8
50 = 0.16 0.56 + 0.16 = 0.72

11.03–13.05 9
9
50 = 0.18 0.72 + 0.18 = 0.90

13.05–15.07 5
5
50 = 0.10 0.90 + 0.10 = 1.00

Total = 50 Total = 1.00

Table 1.13

From Table 1.13, find the percentage of rainfall that is less than 9.01 inches.

Example 1.15

From Table 1.12, find the percentage of heights that fall between 61.95 and 65.95 inches.

Solution 1.15
Add the relative frequencies in the second and third rows: 0.03 + 0.15 = 0.18 or 18%.

1.15 From Table 1.13, find the percentage of rainfall that is between 6.99 and 13.05 inches.
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Example 1.16

Use the heights of the 100 male semiprofessional soccer players in Table 1.12. Fill in the blanks and check your
answers.

a. The percentage of heights that are from 67.95 to 71.95 inches is: ____.

b. The percentage of heights that are from 67.95 to 73.95 inches is: ____.

c. The percentage of heights that are more than 65.95 inches is: ____.

d. The number of players in the sample who are between 61.95 and 71.95 inches tall is: ____.

e. What kind of data are the heights?

f. Describe how you could gather this data (the heights) so that the data are characteristic of all male
semiprofessional soccer players.

Remember, you count frequencies. To find the relative frequency, divide the frequency by the total number of
data values. To find the cumulative relative frequency, add all of the previous relative frequencies to the relative
frequency for the current row.

Solution 1.16
a. 29%

b. 36%

c. 77%

d. 87

e. quantitative continuous

f. get rosters from each team and choose a simple random sample from each

1.16 From Table 1.13, find the number of towns that have rainfall between 2.95 and 9.01 inches.

In your class, have someone conduct a survey of the number of siblings (brothers and sisters) each student has. Create
a frequency table. Add to it a relative frequency column and a cumulative relative frequency column. Answer the
following questions:

1. What percentage of the students in your class have no siblings?

2. What percentage of the students have from one to three siblings?

3. What percentage of the students have fewer than three siblings?

Example 1.17

Nineteen people were asked how many miles, to the nearest mile, they commute to work each day. The data are
as follows: 2; 5; 7; 3; 2; 10; 18; 15; 20; 7; 10; 18; 5; 12; 13; 12; 4; 5; 10. Table 1.14 was produced:
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DATA FREQUENCY RELATIVE
FREQUENCY

CUMULATIVE
RELATIVE
FREQUENCY

3 3 3
19 0.1579

4 1 1
19 0.2105

5 3 3
19 0.1579

7 2 2
19 0.2632

10 3 4
19 0.4737

12 2 2
19 0.7895

13 1 1
19 0.8421

15 1 1
19 0.8948

18 1 1
19 0.9474

20 1 1
19 1.0000

Table 1.14 Frequency of Commuting Distances

a. Is the table correct? If it is not correct, what is wrong?

b. True or False: Three percent of the people surveyed commute three miles. If the statement is not correct,
what should it be? If the table is incorrect, make the corrections.

c. What fraction of the people surveyed commute five or seven miles?

d. What fraction of the people surveyed commute 12 miles or more? Less than 12 miles? Between five and 13
miles (not including five and 13 miles)?

Solution 1.17
a. No. The frequency column sums to 18, not 19. Not all cumulative relative frequencies are correct.

b. False. The frequency for three miles should be one; for two miles (left out), two. The cumulative relative
frequency column should read: 0.1052, 0.1579, 0.2105, 0.3684, 0.4737, 0.6316, 0.7368, 0.7895, 0.8421,
0.9474, 1.0000.

c. 5
19

d. 7
19 , 12

19 , 7
19
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1.17 Table 1.13 represents the amount, in inches, of annual rainfall in a sample of towns. What fraction of towns
surveyed get between 11.03 and 13.05 inches of rainfall each year?

Example 1.18

Table 1.15 contains the total number of deaths worldwide as a result of earthquakes for the period from 2000 to
2012.

Year Total Number of Deaths

2000 231

2001 21,357

2002 11,685

2003 33,819

2004 228,802

2005 88,003

2006 6,605

2007 712

2008 88,011

2009 1,790

2010 320,120

2011 21,953

2012 768

Total 823,356

Table 1.15

Answer the following questions.

a. What is the frequency of deaths measured from 2006 through 2009?

b. What percentage of deaths occurred after 2009?

c. What is the relative frequency of deaths that occurred in 2003 or earlier?

d. What is the percentage of deaths that occurred in 2004?

e. What kind of data are the numbers of deaths?

f. The Richter scale is used to quantify the energy produced by an earthquake. Examples of Richter scale
numbers are 2.3, 4.0, 6.1, and 7.0. What kind of data are these numbers?

Solution 1.18
a. 97,118 (11.8%)

b. 41.6%

c. 67,092/823,356 or 0.081 or 8.1 %

d. 27.8%
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e. Quantitative discrete

f. Quantitative continuous

1.18 Table 1.16 contains the total number of fatal motor vehicle traffic crashes in the United States for the period
from 1994 to 2011.

Year Total Number of Crashes Year Total Number of Crashes

1994 36,254 2004 38,444

1995 37,241 2005 39,252

1996 37,494 2006 38,648

1997 37,324 2007 37,435

1998 37,107 2008 34,172

1999 37,140 2009 30,862

2000 37,526 2010 30,296

2001 37,862 2011 29,757

2002 38,491 Total 653,782

2003 38,477

Table 1.16

Answer the following questions.

a. What is the frequency of deaths measured from 2000 through 2004?

b. What percentage of deaths occurred after 2006?

c. What is the relative frequency of deaths that occurred in 2000 or before?

d. What is the percentage of deaths that occurred in 2011?

e. What is the cumulative relative frequency for 2006? Explain what this number tells you about the data.

1.4 | Experimental Design and Ethics
Does aspirin reduce the risk of heart attacks? Is one brand of fertilizer more effective at growing roses than another?
Is fatigue as dangerous to a driver as the influence of alcohol? Questions like these are answered using randomized
experiments. In this module, you will learn important aspects of experimental design. Proper study design ensures the
production of reliable, accurate data.

The purpose of an experiment is to investigate the relationship between two variables. When one variable causes change
in another, we call the first variable the explanatory variable. The affected variable is called the response variable. In a
randomized experiment, the researcher manipulates values of the explanatory variable and measures the resulting changes
in the response variable. The different values of the explanatory variable are called treatments. An experimental unit is a
single object or individual to be measured.

You want to investigate the effectiveness of vitamin E in preventing disease. You recruit a group of subjects and ask them
if they regularly take vitamin E. You notice that the subjects who take vitamin E exhibit better health on average than
those who do not. Does this prove that vitamin E is effective in disease prevention? It does not. There are many differences
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between the two groups compared in addition to vitamin E consumption. People who take vitamin E regularly often take
other steps to improve their health: exercise, diet, other vitamin supplements, choosing not to smoke. Any one of these
factors could be influencing health. As described, this study does not prove that vitamin E is the key to disease prevention.

Additional variables that can cloud a study are called lurking variables. In order to prove that the explanatory variable is
causing a change in the response variable, it is necessary to isolate the explanatory variable. The researcher must design her
experiment in such a way that there is only one difference between groups being compared: the planned treatments. This is
accomplished by the random assignment of experimental units to treatment groups. When subjects are assigned treatments
randomly, all of the potential lurking variables are spread equally among the groups. At this point the only difference
between groups is the one imposed by the researcher. Different outcomes measured in the response variable, therefore, must
be a direct result of the different treatments. In this way, an experiment can prove a cause-and-effect connection between
the explanatory and response variables.

The power of suggestion can have an important influence on the outcome of an experiment. Studies have shown that the
expectation of the study participant can be as important as the actual medication. In one study of performance-enhancing
drugs, researchers noted:

Results showed that believing one had taken the substance resulted in [performance] times almost as fast as those associated
with consuming the drug itself. In contrast, taking the drug without knowledge yielded no significant performance
increment.[1]

When participation in a study prompts a physical response from a participant, it is difficult to isolate the effects of the
explanatory variable. To counter the power of suggestion, researchers set aside one treatment group as a control group.
This group is given a placebo treatment–a treatment that cannot influence the response variable. The control group helps
researchers balance the effects of being in an experiment with the effects of the active treatments. Of course, if you are
participating in a study and you know that you are receiving a pill which contains no actual medication, then the power of
suggestion is no longer a factor. Blinding in a randomized experiment preserves the power of suggestion. When a person
involved in a research study is blinded, he does not know who is receiving the active treatment(s) and who is receiving
the placebo treatment. A double-blind experiment is one in which both the subjects and the researchers involved with the
subjects are blinded.

Example 1.19

Researchers want to investigate whether taking aspirin regularly reduces the risk of heart attack. Four hundred
men between the ages of 50 and 84 are recruited as participants. The men are divided randomly into two groups:
one group will take aspirin, and the other group will take a placebo. Each man takes one pill each day for three
years, but he does not know whether he is taking aspirin or the placebo. At the end of the study, researchers count
the number of men in each group who have had heart attacks.

Identify the following values for this study: population, sample, experimental units, explanatory variable,
response variable, treatments.

Solution 1.19
The population is men aged 50 to 84.
The sample is the 400 men who participated.
The experimental units are the individual men in the study.
The explanatory variable is oral medication.
The treatments are aspirin and a placebo.
The response variable is whether a subject had a heart attack.

Example 1.20

The Smell & Taste Treatment and Research Foundation conducted a study to investigate whether smell can
affect learning. Subjects completed mazes multiple times while wearing masks. They completed the pencil and
paper mazes three times wearing floral-scented masks, and three times with unscented masks. Participants were

1. McClung, M. Collins, D. “Because I know it will!”: placebo effects of an ergogenic aid on athletic performance.
Journal of Sport & Exercise Psychology. 2007 Jun. 29(3):382-94. Web. April 30, 2013.
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assigned at random to wear the floral mask during the first three trials or during the last three trials. For each
trial, researchers recorded the time it took to complete the maze and the subject’s impression of the mask’s scent:
positive, negative, or neutral.

a. Describe the explanatory and response variables in this study.

b. What are the treatments?

c. Identify any lurking variables that could interfere with this study.

d. Is it possible to use blinding in this study?

Solution 1.20
a. The explanatory variable is scent, and the response variable is the time it takes to complete the maze.

b. There are two treatments: a floral-scented mask and an unscented mask.

c. All subjects experienced both treatments. The order of treatments was randomly assigned so there were no
differences between the treatment groups. Random assignment eliminates the problem of lurking variables.

d. Subjects will clearly know whether they can smell flowers or not, so subjects cannot be blinded in this study.
Researchers timing the mazes can be blinded, though. The researcher who is observing a subject will not
know which mask is being worn.

Example 1.21

A researcher wants to study the effects of birth order on personality. Explain why this study could not be
conducted as a randomized experiment. What is the main problem in a study that cannot be designed as a
randomized experiment?

Solution 1.21
The explanatory variable is birth order. You cannot randomly assign a person’s birth order. Random assignment
eliminates the impact of lurking variables. When you cannot assign subjects to treatment groups at random, there
will be differences between the groups other than the explanatory variable.

1.21 You are concerned about the effects of texting on driving performance. Design a study to test the response time
of drivers while texting and while driving only. How many seconds does it take for a driver to respond when a leading
car hits the brakes?

a. Describe the explanatory and response variables in the study.

b. What are the treatments?

c. What should you consider when selecting participants?

d. Your research partner wants to divide participants randomly into two groups: one to drive without distraction and
one to text and drive simultaneously. Is this a good idea? Why or why not?

e. Identify any lurking variables that could interfere with this study.

f. How can blinding be used in this study?

Ethics
The widespread misuse and misrepresentation of statistical information often gives the field a bad name. Some say that
“numbers don’t lie,” but the people who use numbers to support their claims often do.
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A recent investigation of famous social psychologist, Diederik Stapel, has led to the retraction of his articles from some
of the world’s top journals including Journal of Experimental Social Psychology, Social Psychology, Basic and Applied
Social Psychology, British Journal of Social Psychology, and the magazine Science. Diederik Stapel is a former professor
at Tilburg University in the Netherlands. Over the past two years, an extensive investigation involving three universities
where Stapel has worked concluded that the psychologist is guilty of fraud on a colossal scale. Falsified data taints over 55
papers he authored and 10 Ph.D. dissertations that he supervised.

Stapel did not deny that his deceit was driven by ambition. But it was more complicated than that, he told me. He insisted
that he loved social psychology but had been frustrated by the messiness of experimental data, which rarely led to clear
conclusions. His lifelong obsession with elegance and order, he said, led him to concoct sexy results that journals found
attractive. “It was a quest for aesthetics, for beauty—instead of the truth,” he said. He described his behavior as an
addiction that drove him to carry out acts of increasingly daring fraud, like a junkie seeking a bigger and better high.[2]

The committee investigating Stapel concluded that he is guilty of several practices including:

• creating datasets, which largely confirmed the prior expectations,

• altering data in existing datasets,

• changing measuring instruments without reporting the change, and

• misrepresenting the number of experimental subjects.

Clearly, it is never acceptable to falsify data the way this researcher did. Sometimes, however, violations of ethics are not
as easy to spot.

Researchers have a responsibility to verify that proper methods are being followed. The report describing the investigation
of Stapel’s fraud states that, “statistical flaws frequently revealed a lack of familiarity with elementary statistics.”[3] Many
of Stapel’s co-authors should have spotted irregularities in his data. Unfortunately, they did not know very much about
statistical analysis, and they simply trusted that he was collecting and reporting data properly.

Many types of statistical fraud are difficult to spot. Some researchers simply stop collecting data once they have just enough
to prove what they had hoped to prove. They don’t want to take the chance that a more extensive study would complicate
their lives by producing data contradicting their hypothesis.

Professional organizations, like the American Statistical Association, clearly define expectations for researchers. There are
even laws in the federal code about the use of research data.

When a statistical study uses human participants, as in medical studies, both ethics and the law dictate that researchers
should be mindful of the safety of their research subjects. The U.S. Department of Health and Human Services oversees
federal regulations of research studies with the aim of protecting participants. When a university or other research institution
engages in research, it must ensure the safety of all human subjects. For this reason, research institutions establish oversight
committees known as Institutional Review Boards (IRB). All planned studies must be approved in advance by the IRB.
Key protections that are mandated by law include the following:

• Risks to participants must be minimized and reasonable with respect to projected benefits.

• Participants must give informed consent. This means that the risks of participation must be clearly explained to the
subjects of the study. Subjects must consent in writing, and researchers are required to keep documentation of their
consent.

• Data collected from individuals must be guarded carefully to protect their privacy.

These ideas may seem fundamental, but they can be very difficult to verify in practice. Is removing a participant’s name
from the data record sufficient to protect privacy? Perhaps the person’s identity could be discovered from the data that
remains. What happens if the study does not proceed as planned and risks arise that were not anticipated? When is informed
consent really necessary? Suppose your doctor wants a blood sample to check your cholesterol level. Once the sample has
been tested, you expect the lab to dispose of the remaining blood. At that point the blood becomes biological waste. Does a
researcher have the right to take it for use in a study?

It is important that students of statistics take time to consider the ethical questions that arise in statistical studies.
How prevalent is fraud in statistical studies? You might be surprised—and disappointed. There is a website

2. Yudhijit Bhattacharjee, “The Mind of a Con Man,” Magazine, New York Times, April 26, 2013. Available online at:
http://www.nytimes.com/2013/04/28/magazine/diederik-stapels-audacious-academic-fraud.html?src=dayp&_r=2&
(accessed May 1, 2013).
3. “Flawed Science: The Fraudulent Research Practices of Social Psychologist Diederik Stapel,” Tillburg University,
November 28, 2012, http://www.tilburguniversity.edu/upload/064a10cd-
bce5-4385-b9ff-05b840caeae6_120695_Rapp_nov_2012_UK_web.pdf (accessed May 1, 2013).
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(www.retractionwatch.com) (http://www.retractionwatch.com) dedicated to cataloging retractions of study
articles that have been proven fraudulent. A quick glance will show that the misuse of statistics is a bigger problem than
most people realize.

Vigilance against fraud requires knowledge. Learning the basic theory of statistics will empower you to analyze statistical
studies critically.

Example 1.22

Describe the unethical behavior in each example and describe how it could impact the reliability of the resulting
data. Explain how the problem should be corrected.

A researcher is collecting data in a community.

a. She selects a block where she is comfortable walking because she knows many of the people living on the
street.

b. No one seems to be home at four houses on her route. She does not record the addresses and does not return
at a later time to try to find residents at home.

c. She skips four houses on her route because she is running late for an appointment. When she gets home, she
fills in the forms by selecting random answers from other residents in the neighborhood.

Solution 1.22
a. By selecting a convenient sample, the researcher is intentionally selecting a sample that could be biased.

Claiming that this sample represents the community is misleading. The researcher needs to select areas in
the community at random.

b. Intentionally omitting relevant data will create bias in the sample. Suppose the researcher is gathering
information about jobs and child care. By ignoring people who are not home, she may be missing data from
working families that are relevant to her study. She needs to make every effort to interview all members of
the target sample.

c. It is never acceptable to fake data. Even though the responses she uses are “real” responses provided by
other participants, the duplication is fraudulent and can create bias in the data. She needs to work diligently
to interview everyone on her route.

1.22 Describe the unethical behavior, if any, in each example and describe how it could impact the reliability of the
resulting data. Explain how the problem should be corrected.

A study is commissioned to determine the favorite brand of fruit juice among teens in California.

a. The survey is commissioned by the seller of a popular brand of apple juice.

b. There are only two types of juice included in the study: apple juice and cranberry juice.

c. Researchers allow participants to see the brand of juice as samples are poured for a taste test.

d. Twenty-five percent of participants prefer Brand X, 33% prefer Brand Y and 42% have no preference between
the two brands. Brand X references the study in a commercial saying “Most teens like Brand X as much as or
more than Brand Y.”

1.5 | Data Collection Experiment
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