Worksheet – Control Mechanism (lac & trp operons) Name:
--

1	Complete the	comparison	of the lac O	naron and tr	p Operons as a	means of gen	o regulation
Ι.	Complete the	Companison	of the fac o	peron and u	p Operons as a	illeans of gene	e regulation.

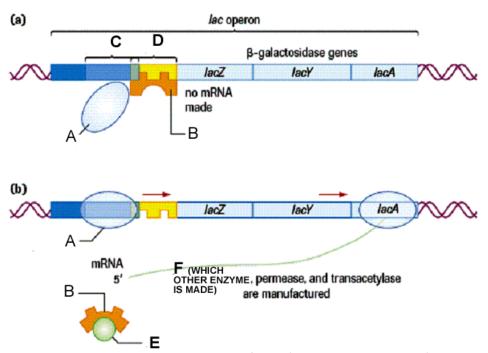
	<i>lac</i> operon	<i>trp</i> operon
Regulates production of:		
Number of genes and how they are controlled		
What binds to the operator & when does this occur		
High levels of what substance affects the operon how?		

2.	Why	have	genes	under	regu	lation	í
∠.	V V I I V	Have	guillo	unuci	I CE U	iatioi	

- 3. What is the function of the promoter?
- 4. What is the function of the operator?

5. What happens if lactose levels are low? Put the following list in order (1-5).

RNA polymerase is blocked from transcribing the genes for the lactose metabolizing enzymes
When RNA polymerase binds to the promoter, it cannot get past the LacI repressor protein
The enzymes B-galactosidae, B-galacosidae permease, and transacetylase are not required by the cell due to low levels of lactose
Lactose does not bind to the repressor protein, Lacl
 Lacl, a repressor protein, is bound to the operator, which follows the promoter


6. What happens if tryptophan levels are high? Put the following list in order (1-4).

The trp repressor-tryptophan complex can now bind to the operator of the trp operon
Tryptophan does not need to be produced by the trp operon
Tryptophan will bind to the repressor protein, changing its conformation
RNA Polymerase is blocked from transcribing the genes needed to synthesize tryptophan

7. What happens if lactose is present and glucose is scarce? Put the following list in order (1-7). Start with the repressor part first.

The three enzymes involved in the metabolism of lactose are transcribed and expressed
cAMP binds to CAP regulatory protein, causing it to bind to the promoter of the lac operon
The enzymes needed for lactose metabolism must be transcribed when lactose is present
cAMP levels increase because glucose is scarce (ATP is not being produced through cell respiration)
Lactose binds to the LacI repressor, changing LacI's shape and making it fall off the operator
CAP binding causes RNA Polymerase to bind to the promoter (higher affinity) and transcribe the gene at a higher level than before
Now that LacI has been removed for the operator, RNA polymerase can proceed with transcription

8. Label the following diagram.

Create Playdoh models of both the lac and tryp operon models on a manila folder (so you can transport it). Be able to explain how these operon models work when you show your model. Be able to explain the following: positive regulation, negative regulation, repressible operon, inducible operon, operon, operator, repressor protein, promoter, corepressor and inducer. Students may use their models as resources on the corresponding quiz.