Proteins

Free Response

Explain what happens if even one amino acid is substituted for another in a polypeptide chain. Provide a specific example.

Hint:

A change in gene sequence can lead to a different amino acid being added to a polypeptide chain instead of the normal one. This causes a change in protein structure and function. For example, in sickle cell anemia, the hemoglobin β chain has a single amino acid substitution—the amino acid glutamic acid in position six is substituted by valine. Because of this change, hemoglobin molecules form aggregates, and the disc-shaped red blood cells assume a crescent shape, which results in serious health problems.

Describe the differences in the four protein structures.

Hint:

The sequence and number of amino acids in a polypeptide chain is its primary structure. The local folding of the polypeptide in some regions is the secondary structure of the protein. The three-dimensional structure of a polypeptide is known as its tertiary structure, created in part by chemical interactions such as hydrogen bonds between polar side chains, van der Waals interactions, disulfide linkages, and hydrophobic interactions. Some proteins are formed from multiple polypeptides, also known as subunits, and the interaction of these subunits forms the quaternary structure.

Aquaporins are proteins embedded in the plasma membrane that allow water molecules to move between the extracellular matrix and the intracellular space. Based on its function and location, describe the key features of the protein’s shape and the chemical characteristics of its amino acids.

Hint:

The protein must form a channel in the plasma membrane that allows water into the cell since water cannot cross the plasma membrane by itself. Since aquaporins are embedded in the plasma membrane and connect with both the intracellular and extracellular spaces, it must be amphipathic like the plasma membrane. The top and bottom of the protein must contain charged or polar amino acids (hydrophilic) to interact with the aqueous environments. The exterior transmembrane region must contain non-polar amino acids (hydrophobic) that can interact with the phospholipid tails. However, the inside of this channel must contain hydrophilic amino acids since they will interact with the traveling water molecules.