Eukaryotic Translational and Post-translational Gene Regulation

Free Response

Protein modification can alter gene expression in many ways. Describe how phosphorylation of proteins can alter gene expression.


Because proteins are involved in every stage of gene regulation, phosphorylation of a protein (depending on the protein that is modified) can alter accessibility to the chromosome, can alter translation (by altering the transcription factor binding or function), can change nuclear shuttling (by influencing modifications to the nuclear pore complex), can alter RNA stability (by binding or not binding to the RNA to regulate its stability), can modify translation (increase or decrease), or can change post-translational modifications (add or remove phosphates or other chemical modifications).

Alternative forms of a protein can be beneficial or harmful to a cell. What do you think would happen if too much of an alternative protein bound to the 3' UTR of an RNA and caused it to degrade?


If the RNA degraded, then less of the protein that the RNA encodes would be translated. This could have dramatic implications for the cell.

Changes in epigenetic modifications alter the accessibility and transcription of DNA. Describe how environmental stimuli, such as ultraviolet light exposure, could modify gene expression.


Environmental stimuli, like ultraviolet light exposure, can alter the modifications to the histone proteins or DNA. Such stimuli may change an actively transcribed gene into a silenced gene by removing acetyl groups from histone proteins or by adding methyl groups to DNA.

A scientist discovers a virus encoding a Protein X that degrades a subunit of the eIF4F complex. Knowing that this virus transcribes its own mRNAs in the cytoplasm of human cells, why would Protein X be an effective virulence factor?


Degrading the eIF4F complex prevents the pre-initiation complex (eIF-2-GTP, tRNAi-Met, and 40S ribosomal subunit) from being recruited to the 5’ cap of mature mRNAs in the cell. This allows the virus to hijack the translation machinery of the human cell to translate its own (uncapped) mRNA transcripts instead.