Updating search results...

Search Resources

8 Results

View
Selected filters:
  • OH.OSC.0004. Core.1 - Evolution: The diversity of life is evolved over time by processes of ...
  • OH.OSC.0004. Core.1 - Evolution: The diversity of life is evolved over time by processes of ...
Biology I Course Content
Unrestricted Use
CC BY
Rating
0.0 stars

The Biology I Course was developed through the Ohio Department of Higher Education OER Innovation Grant. The course is part of the Ohio Transfer Assurance Guides and is also named OSC003. This work was completed and the course was posted in October 2019. For more information about credit transfer between Ohio colleges and universities, please visit: www.ohiohighered.org/transfer.Team LeadCathy Sistilli                                         Eastern Gateway Community CollegeContent ContributorsLisa Aschemeier                                 Northwest State Community CollegeShaun Blevins                                     Rhodes State CollegeRachel Detraz                                     Edison State Community College                                     Sara Finch                                          Sinclair Community CollegeWendy Gagliano                                 Clark State Community College AJ Snow                                             University of Akron Wayne CollegeLibrarianAmanda Rinehart                               Ohio State UniversityReview TeamJessica Hall                                        Ohio Dominican UniversitySanhita Gupta                                    Kent State UniversityErica Mersfelder                                 Sinclair Community College

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Ohio Open Ed Collaborative
Date Added:
01/09/2019
Biology I Course Content, Evolution and the Origin of Species, Evolution and the Origin of Species Resources
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The theory of evolution is the unifying theory of biology, meaning it is the framework within which biologists ask questions about the living world. Its power is that it provides direction for predictions about living things that are borne out in ongoing experiments. The Ukrainian-born American geneticist Theodosius Dobzhansky famously wrote that “nothing makes sense in biology except in the light of evolution.” He meant that the tenet that all life has evolved and diversified from a common ancestor is the foundation from which we approach all questions in biology.

Subject:
Biology
Material Type:
Module
Date Added:
05/22/2019
Biology I Course Content, Introduction to Animal Diversity, Introduction to Animal Diversity Resources
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Animal evolution began in the ocean over 600 million years ago with tiny creatures that probably do not resemble any living organism today. Since then, animals have evolved into a highly diverse kingdom. But what is an animal? While we can easily identify dogs, birds, fish, spiders, and worms as animals, other organisms, such as corals and sponges, are not as easy to classify. Animals vary in complexity—from sea sponges to crickets to chimpanzees—and scientists are faced with the difficult task of classifying them within a unified system. They must identify traits that are common to all animals as well as traits that can be used to distinguish among related groups of animals. The animal classification system characterizes animals based on their anatomy, morphology, evolutionary history, features of embryological development, and genetic makeup. This classification scheme is constantly developing as new information about species arises. Understanding and classifying the great variety of living species help us better understand how to conserve the diversity of life on earth. 

Subject:
Biology
Material Type:
Module
Date Added:
05/22/2019
Biology I Course Content, The Evolution of Populations, The Evolution of Populations Resources
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

People did not understand the mechanisms of inheritance, or genetics, at the time Charles Darwin and Alfred Russel Wallace were developing their idea of natural selection. Scholars rediscovered Mendel’s work in the early twentieth century, and over the next few decades scientists integrated genetics and evolution in what became known as the modern synthesis—the coherent understanding of the relationship between natural selection and genetics that took shape by the 1940s. Natural selection can affect a population’s genetic makeup, and, in turn, this can result in the gradual evolution of populations. In the early twentieth century, biologists in the area of population genetics began to study how selective forces change a population through changes in allele and genotypic frequencies.  Adaptive evolution is the process by which natural selection increases the frequency of beneficial alleles in the population, while decreasing the frequency of deleterious alleles.

Subject:
Biology
Material Type:
Module
Date Added:
05/22/2019
Biology II Course Content
Unrestricted Use
CC BY
Rating
0.0 stars

The Biology II Course was developed through the Ohio Department of Higher Education OER Innovation Grant. The course is part of the Ohio Transfer Assurance Guides and is also named OSC004. This work was completed and the course was posted in October 2019. For more information about credit transfer between Ohio colleges and universities, please visit: www.ohiohighered.org/transfer.Team LeadCathy Sistilli                                         Eastern Gateway Community CollegeContent ContributorsLisa Aschemeier                                 Northwest State Community CollegeShaun Blevins                                     Rhodes State CollegeRachel Detraz                                     Edison State Community College                                     Sara Finch                                          Sinclair Community CollegeWendy Gagliano                                 Clark State Community College AJ Snow                                             University of Akron Wayne CollegeLibrarianAmanda Rinehart                               Ohio State UniversityReview TeamJessica Hall                                        Ohio Dominican UniversitySanhita Gupta                                    Kent State UniversityErica Mersfelder                                 Sinclair Community College

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Ohio Open Ed Collaborative
Date Added:
01/09/2019
Biology II Course Content, Cell Structure, Cell Structure Resources
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Your body has many kinds of cells, each specialized for a specific purpose. Just as we use a variety of materials to build a home, the human body is constructed from many cell types. For example, epithelial cells protect the body's surface and cover the organs and body cavities within. Bone cells help to support and protect the body. Immune system cells fight invading bacteria. Additionally, blood and blood cells carry nutrients and oxygen throughout the body while removing carbon dioxide. Each of these cell types plays a vital role during the body's growth, development, and day-to-day maintenance. In spite of their enormous variety, however, cells from all organisms—even ones as diverse as bacteria, onion, and human—share certain fundamental characteristics.

Subject:
Biology
Material Type:
Module
Date Added:
05/23/2019
Biology II Course Content, Cellular Respiration, Cellular Respiration Resources
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Plants and animals must take in and transform energy for use by cells.  Plants, through photosynthesis, absorb light energy and form organic molecules such as glucose.  Glucose has potential energy in the form of chemical energy stored in its bonds.  This chapter covers the metabolic pathways of cellular respiration and describes the chemical reactions that use energy in glucose and other organic molecules to form adenosine triphosphate (ATP).  ATP is the cell’s “energy currency” fueling virtually all energy requiring processes.  The chemical reactions of cellular respiration are a series of oxidation- reduction (redox) reactions that are divided into three stages: glycolysis, the citric acid cycle and oxidative phosphorylation.

Subject:
Biology
Material Type:
Module
Date Added:
05/23/2019
Biology II Course Content, Photosynthesis Introduction, Photosynthesis Introduction Resources
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Virtually all life on Earth depends on Photosynthesis. Photosynthesis uses energy in sunlight to form organic molecules such as glucose.  This transformation of light energy to chemical energy provides fuel for the metabolic processes in all organisms.  Photosynthesis also produces oxygen required for aerobic cellular respiration. This chapter covers light energy as part of the electromagnetic spectrum, basic structures involved in photosynthesis and the metabolic pathways of photosynthesis divided into the light-dependent reactions and the Calvin cycle.

Subject:
Biology
Material Type:
Module
Date Added:
05/23/2019