This content was created as part of an Ohio Department of Higher Education Innovation Grant to create Open Educational Resources for high enrollment courses. A team of faculty content collaborators, a librarian, and a faculty review team worked together to curate this content and assure that it meets the Transfer Assurance Guidelines for this course. The Linear Algebra Course Content is designed to help the instructor teach all of the objectives of the course and can be used as a whole or in pieces or modules. Please visit ohioopened.org for more information about this initiative.

Linear Algebra course developed through the Ohio Department of Higher Education OER ...

Linear Algebra course developed through the Ohio Department of Higher Education OER Innovation Grant. The course is part of the Ohio Transfer Module and is also named OMT019. For more information about credit transfer between Ohio colleges and universities, please visit: www.ohiohighered.org/transfer.Team LeadAnna Davis Ohio Dominican UniversityContent ContributorsPaul Bender Ohio Dominican UniversityRosemarie Emanuele Ursuline CollegePaul Zachlin Lakeland Community CollegeLibrarianDaniel Dotson Ohio State University Review TeamJim Fowler Ohio State UniversityJim Cottrill Ohio Dominican University

We establish that a plane is determined by a point and a ...

We establish that a plane is determined by a point and a normal vector, and use this information to derive a general equation for planes in R^3.https://ximera.osu.edu/la/LinearAlgebra/RRN-M-0030/main

We introduce standard unit vectors in R^2, R^3 and R^n, and express a given vector as ...

We introduce standard unit vectors in R^2, R^3 and R^n, and express a given vector as a linear combination of standard unit vectors.https://ximera.osu.edu/la/LinearAlgebra/VEC-M-0035/main

We state and prove the cosine formula for the dot product of ...

We state and prove the cosine formula for the dot product of two vectors, and show that two vectors are orthogonal if and only if their dot product is zero.https://ximera.osu.edu/la/LinearAlgebra/VEC-M-0060/main

We find the projection of a vector onto a given non-zero vector, ...

We find the projection of a vector onto a given non-zero vector, and find the distance between a point and a line.https://ximera.osu.edu/la/LinearAlgebra/VEC-M-0070/main

We define the determinant of a square matrix in terms of cofactor ...

We define the determinant of a square matrix in terms of cofactor expansion along the first row.https://ximera.osu.edu/la/LinearAlgebra/DET-M-0010/main

We define the determinant of a square matrix in terms of cofactor ...

We define the determinant of a square matrix in terms of cofactor expansion along the first column, and show that this definition is equivalent to the definition in terms of cofactor expansion along the first row.https://ximera.osu.edu/la/LinearAlgebra/DET-M-0020/main

We examine the effect of elementary row operations on the determinant and ...

We examine the effect of elementary row operations on the determinant and use row reduction algorithm to compute the determinant.https://ximera.osu.edu/la/LinearAlgebra/DET-M-0030/main

We explore the theory behind finding the eigenvalues and associated eigenvectors of ...

We explore the theory behind finding the eigenvalues and associated eigenvectors of a square matrix.https://ximera.osu.edu/la/LinearAlgebra/EIG-M-0020/main

In this module we discuss algebraic multiplicity, geometric multiplicity, and their relationship ...

In this module we discuss algebraic multiplicity, geometric multiplicity, and their relationship to diagonalizability.https://ximera.osu.edu/la/LinearAlgebra/EIG-M-0050/main

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.