Introductory statistics course developed through the Ohio Department of Higher Education OER …
Introductory statistics course developed through the Ohio Department of Higher Education OER Innovation Grant. The course is part of the Ohio Transfer Module and is also named TMM010. For more information about credit transfer between Ohio colleges and universities please visit: www.ohiohighered.org/transfer.Team LeadKameswarrao Casukhela Ohio State University – LimaContent ContributorsEmily Dennett Central Ohio Technical CollegeSara Rollo North Central State CollegeNicholas Shay Central Ohio Technical CollegeChan Siriphokha Clark State Community CollegeLibrarianJoy Gao Ohio Wesleyan UniversityReview TeamAlice Taylor University of Rio GrandeJim Cottrill Ohio Dominican University
Many inferential procedures assume that variable(s) under study follow a normal distribution …
Many inferential procedures assume that variable(s) under study follow a normal distribution in the population. In this module we will study properties of this distribution and learn how to calculate important measures that would be useful later in inference.Learning Objectives:Understand the properties of a normal distribution, the graph of its density function, interpret areas enclosed by a normal curve over an interval, percentilesLearn and apply 68-95-99.7 Empirical RuleStandard normal distribution, z-scores and standard normal tableCompute areas under the normal curve and interpret the resultsCompute percentiles and interpret the resultsCalculate cut-off values of the variable to cover middle p% of the distributionHow normal is a population distribution - Learn how to infer that the population distribution of the variable is normal – set up hypothesis, use normal probability plot, Anderson-Darling normality test, interpret p-value of the testChapter 6 – Normal Distribution – Pages 361 - 375Suggested Exercises – Chapter 6 – Odds 60 through 80
In this module we will learn about discrete random variables, their distributions …
In this module we will learn about discrete random variables, their distributions and properties. Of specific interest would be a binomial random variable, its distribution and applications.Learning Objectives:Discrete random variable, distribution, mean and standard deviationBinomial random variable and its distributionTextbook Material - Chapter 4 – Probability Topics – Pages 239 - 257Suggested Homework:Discrete Random Variable - 69, 70, 74, 75, 76, 78, 96, 102Binomial Distribution – Odds 88 - 111
ProbabilityThe notion of chance or probability of an event plays a crucial …
ProbabilityThe notion of chance or probability of an event plays a crucial role in statistics. In this module we will study this notion and learn different rules that will help us determine the probability of different types of events associated with a process.Learning Objectives:Random experiment, sample space, eventsPermutation and CombinationDefinition of probability of an event and its propertiesDisjoint and independent eventsConditional eventsVenn and Tree DiagramsComplement (Subtraction) ruleAddition ruleMultiplication ruleDivision ruleTwo-Way tablesTotal Probability Rule and Bayes Rule
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.